High resolution remote sensing image analysis with exogenous data

Vincent Poulain

January 11th 2008
Outline

Image analysis

PhD thesis framework

Example of instantiation

Conclusion

Future prospects
Ideal goal of image analysis: Obtaining quickly and automatically an image interpretation specific to each application.
High resolution satellites

- Optical / Multi-spectral
 - SPOT5: 2,5m
 - Pléiades: 0,7m

- Radar (SAR)
 - Terrasar-X: 1m
 - Cosmo Skymed: 1m
 - Radarsat-2: 3m
Works on image analysis in literature:
- Often specific to one application and to one sensor
- Prior information rarely considered

Future prospects:
- Consideration of multi-sensor data
- Use of exogenous data like database, DEM, ...
Outline

Image analysis

PhD thesis framework

Example of instantiation

Conclusion

Future prospects
Foreseen data:
- Sensors: Pléiades, Spot5, Cosmo-Skymed, Terrasar-X, Radarsat-2
- Databases: IGN BD Topo, Urban DB, Scanned maps
- Several possible scenarios according to available data

Information extraction:
- Selection of relevant data
- Possible use of database
- Object extraction

Change detection
Figure: Proposed processing chain
Outline

Image analysis

PhD thesis framework

Example of instantiation

Conclusion

Future prospects
Chosen processing chain

HR SAR Sensors
Optical/multispectral HR Sensors
Filtering
Information Extraction
Registration
Change detection
Relevant feedback
Database Creation / Update

- Optical Image (Pléiades)
- 2D Vector DB
- Image comparison
Figure: Main processing steps
Database representation

- Use of Urban database in DXF format
- Rasterization
Optical image processing

- Panchromatic image
- Watershed segmentation
- Kohonen self organizing map classification
Figure: Watershed algorithm principle
Figure: Saint-Michel district after anisotropic filtering

Figure: Segmentation thanks to watershed algorithm
Figure: Saint-Michel district segmentation after simplification

Figure: Polyline representation
Classification

Classification thanks to Kohonen’s Self Organizing Map.

Parameters for classification:

- Mean length between two vertices
- Maximum segment length in the polyline
- Difference between simplified polyline and original polyline
- Variance between right angle and angles in the simplified polyline
- Flusser moments
Figure: Result of the classification

Figure: Segmented raster image
Change detection

Figure: Registration of database and raster image
Figure: Saint-Michel district: database

Figure: Result of the classification
Use of Danielsson distance maps:

Figure: Distance map of the database

Figure: Satellite image distance map
Tested methods:

- Change detection by subtraction between distance maps
- Change detection by correlation
- Change detection by integration of database distance map along each polyline
Image analysis
PhD thesis framework
Example of instantiation
Conclusion
Future prospects

Figure: Reference database

Figure: Addition of 4 buildings
Image analysis
PhD thesis framework
Example of instantiation
Conclusion
Future prospects

Figure: Test of building addition with correlation method

Figure: Test of building addition with subtraction method
Figure: Saint-Michel district: database

Figure: Result of the classification
Figure: Change detection result using correlation method

Figure: Change detection result using subtraction method
Figure: Superposition of polylines on database distance map

Figure: Change detection result using integral along polylines
Conclusion

- Crucial importance of segmentation in this approach
- Use of multi-spectral information to improve segmentation result
- Possibility to combine several change detection methods
Outline

Image analysis

PhD thesis framework

Example of instantiation

Future prospects
Figure: Multi-sensor data registration
Figure: Use of generic processing methods
Figure: Use of the database to guide image analysis
Figure: Choice of representation level
Figure: Uncertainty modeling
Future prospects

- Multi-sensor data registration
- Use of generic processing methods
- Use of the database to guide image analysis
- Choice of representation level
- Uncertainty modeling