ORFEO Preparatory Program -

WG 4 « GEOLOGY - GEOPHYSICS »

_

Toulouse - June 10 2006

Composition

Christophe DELACOURT : Institut Universitaire Européen de la Mer UBO/CNRS

Pierre BRIOLE : CNRS/INSU Geoscope

Claudie CARNEC : BRGM

Rémi MICHEL : CEA/DASE

Eric GASTINE : SOLETANCHE-BACHY SOLDATA

Stéphane BAIZE : Inst. Radioprotection & Sûreté Nucléaire

Yann KLINGER : IPGP Département de Tectonique

Michel GAY : CNRS/Laboratoire des Images et des Signaux

Selma CHERCHALI : CNES

Steven Hosford : CNES

Specificity:

Most of the participants of this WG are at the boundary between «Thematicians » and « Methodologists » (SAR Interferometry, image correlation, image processing....)

Thematic domain

Vulcanology

Seismotectonic: Field that bridges earthquake seismology and plate tectonics

Cryosphere: The Earth's cryosphere includes sea ice, freshwater ice, snow, glaciers, frozen ground and permafrost.

Gravitating Motions

Landslide: rock, earth, or debris flows on slopes due to gravity **Subsidence**: Natural and anthropic **Erosion**

What we want to do with VHR satellite images:

Imagery of active faults - Seisms

- Faults maps
- Co-seismic and Post-seismic surface displacement maps
- Damage maps

Gravitating Motion

- Detection ; Maps ; Monitoring displacement

Volcanology

- To follow temporal evolution

Subsidence

- Detection; Monitoring displacement

Erosion Susceptibility

- Erosion rate estimation

Cryosphere

- Glacial lake detection and evolution
- Antartic coastal boundary evolution
- Glaciers evolution (Alps, Himalaya Antartic)

- Main Requirement of WG4:
 - Quantification of change and motion (correlation, DEM's...)
- No specific requirement for automatic detection of objects (excepted for few elements : faults, lava flows, glacial lakes...)
- High temporal acquisition in similar orbital conditions Specific acquisition periods (Glaciers, landslide, volcanoes..)
- Knowledge of radiometric and geometrical parameters of images (orbitography, image quality...)
 - DEM and DSM in natural context with metric spatial resolution and accuracy
 - Build up of Archive (Seisms...)
 - In case of crisis: reduction of time between request and image download

2 Thematic Studies

- High spatial resolution cartography of geological surface and Surface deformation cartography associated to the Fuyun Area (China)
- Potential of multitemporal image correlation for surface displacement maps

Problematic

 Attempt to map a 77 years old surface rupture using High Resolution Satellite images

> In order to describe the geometry and the slip distribution associated with the 1931 Fuyun earthquake

- To better constraint dynamic rupture models :
 - Many models of seismic cycles
 - Models validation is difficult due to a lack of data

Conclusions

- Detailed mapping of 77 yrs old surface rupture using High Resolution Satellite images.
- Important tools because :
 - Overall picture of the earthquake rupture (of great length located in remoteness area).
 - Detailed analysis of the associated coseismic and cumulative deformation.
 - Key to assess more systematically the role of discontinuities on the rupture propagation in order to better constraint dynamic rupture models.
 - Fast, global and unique information to study large earthquake.

Perspectives

- Go on the field to check our measurements and to date the offsets in order to check our seismic cycle assumption.
- Apply this method to other old ruptures to complete their slip distribution curve and in the end to better constrain the seismic cycles in order to assess the earthquake hazard.
- Do and understand, on a very large scale, the seismic sequences of Asian continental faults.

Conclusions

- Optical image correlation has been successfully applied to a wide field of applications (volcano, landslide, earthquake, glaciers...)
- However this technique requires specific constraints on image acquisition:
 - High repeatability acquisitions with various time spans and period acquisition
 - · Similar orbital configuration
 - · Image (geometrical / radiometric) information
 - · Archive
- •Actually it is very difficult to obtain such type of data with SPOT 5 (acquisition constraints....)
- Geophysics community hope that it will be better with Pleiades.....